
NASA Contractor Report 187498
ICASE Report No. 91-4

ICASE
COMPLETE EXCHANGE ON THE iPSC-860I

Shahid H. Bokhari

Contract No. NAS 1-18605
January 1991

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center
Hampton, Virginia 23665-5225

Operated by the Universities Space Research Association

DTIC
ELECTENlASA SMAR L I

HifiirinI Arpron'ii ir indB
Spn ic, Admilniqlration

1-nqley Fleq&enrch Center
I" nmriplon, Virqinin 23FG 5225

00105'"f9ION 1 TADE05 A
Approd kwr public rIMWN

Dwibte slmbd91304

Complete Exchange on the iPSC-860*

Shahid H. Bokhari
Department of Electrical Engineering

University of Engineering &4 Technology, Lahore, Pakistan

and

ICASE, NASA Langley Research Center

Hampton, Virginia

Abstract

The implementation of complete exchange on the circuit switched
Intel iPSC-860 hypercube is described. This pattern, also known as
all-to-all personalized communication, is the densest requirement that
can be imposed on a network. On the iPSC-860, care needs to be
taken to avoid edge contention, which can have a disastrous impact
on communication time. There are basically two classes of algorithms
that achieve contention-free complete exchange. The first contains
the classical standard exchange algorithm that is generally useful for
small message sizes. The second includes a number of optimal or
near-optimal algorithms that are best for large me-sages.

Measurements of communication overhead on the iPSC-860 are
given and a notation for analyzing communication link usage is de-
veloped. It is shown that for the two classes of algorithms, there is
substantial variation in performance with synchronization technique
and choice of message protocol. Timings of six implementations are
given; each of these is useful over a particular range of message size
and cube dimension.

Since the complete exchange is a superset of all communication
patterns, these timings represent upper bounds on the time required
by an arbitrary communication requirement. These results indicate
that the programmer needs to evaluate several possibilities before fi-
nalizing an implementation-a careful choice can lead to very signifi-
cant savings in time.

*Research supported by the National Aeronautics and Space Administration under
NASA contract NAS1-18605 while the author was in residence at the Institute for Com-
puter Applications in Science & Engineering, Mail Stop 132C, NASA Langley Research
Center, Hampton, VA 23665-5225.

1 Introduction

The complete exchange (all-to-all personalized) communication pattern arises
in many important parallel processing applications. Some examples are
matrix transpose, matrix-vector multiply, certain implementations of the 2-
dimensional FFT and distributed table lookup. The complete exchange is
equivalent to the complete directed graph and is, as such, the densest com-
munication requirement that can be imposed on a network.

We describe the implementation of this pattern on the circuit switched
Intel iPSC-860 hypercube. There are two basic classes of algorithms for
complete exchange on this machine. The first class contains the well known
standard exchange store-and-forward algorithm that uses, for a d-dimensional
machine, d messages of size 2

d - 1 blocks each and is useful when the blocks are
small. The second class is made up of a number of optimal or near-optimal
circuit-switched algorithms that use 2d or 2d

- 1 messages of size 1 block
each and are always better than standard exchange for large enough block
size. Within each class there is substantial variation in performance with
synchronization technique and choice of message protocol. Consequently
there are no less than six implementations, each of which is useful for some
range of message size and hypercube dimension.

In Section 2 of this paper we describe the interconnection network, rout-
ing strategy and communication performance of the Intel iPSC-860. We
show the impact of message protocol and distance on communication time
and also show how edge contention can be disastrous. We discuss the com-
plete exchange pattern in Section 3 and introduce a tabular notation for its
communication link requirements. This is helpful in presenting the various
algorithms that follow in Section 4.

Details of our implementations are given in Section 5. In Section 6 we
present measured timings of the six implementations. We conclude with
Section 7, which contains a discussion of our results and speculations on how
our observations on complete exchange apply to arbitrary communication
patterns.

Accession For

NTIS GRA&I
DTIC TAB 5]
Unannounced 0
JustIficatlo

By

Distrhit I on/
rAvallabllty Codes

Mrsil and/or

Stst Speoit.

-,C -

2 The Intel iPSC-860 hypercube

The interconnection network of a 32 node hypercube is shown in Figure
1. The labeled vertices hanging from each vertex of the network represent
processors of the hypercube. Two processors in the network are connected
if and only if the binary representations of their labels differ in exactly one
bit. An important feature of interprocessor communications in the Intel
hypercube is circuit switching. When two nodes wish to communicate, a
dedicated path is set up between them. Messages then flow through this
path without involving intervening processors. The path between source and
destination is determined by the 'e-clibe' routing algorithm: starting with
the right hand side of the binary label of the source processor, we move to
the processor whose label most closely matches the label of the destination
processor.

Since the routing algorithm is fixed, we can encounter edge and node
contention. Edge contention is the sharing of an edge (i.e. a communication
link) by two or more paths. Similarly, node contention is the sharing of a
node.

Figure 1 illustrates paths from 0 to 31 (solid), 2 to 23 (dashed) and 14
to 11 (dotted). The lengths of these paths (the distance between source and
destination) are 5, 3 and 2 respectively. The paths 0 --+ 31 and 2 -+ 23 share
the edge 3-7, while the paths 0 --+ 31 and 14 --+ 11 share node 15.

2.1 Measurements of Communication Overhead

We now provide measurements of the communication overhead on the iPSC-
860. Earlier but more extensive measurements are given in [1]. Detailed
analyses of some aspects of the communication system on the Intel iPSC-2*
and on the iPSC-860 appear in [6, 7, 8].

2.2 Impact of path length

There are two message types (selectable by the programmer) on the iPSC-
86U[3j. A message of the FORCED type is discarded upon arrival if no receive

*The iPSC-2 is an earlier hypercube that uses less powerful 80Z'C pruccssors h~it has
interconnection hardware similar to the iPSC-860.

2

10001i~oll1002

_- - - - - -- - o

Figure 1: Interconnection network of a 32 node hypercube.

0.0006

7

0.0005 .UNFORC[D. 6

5

4

3
0.0004

2

-71

V)7
N'0.0003

FOCE

0.0002

0. I-0001

0 100 200 300 400
Message Length (Bytes)

Figure 2: Impact of path length: 0-400 bytes.

4

has been posted for it. A message of the UNFORCED type is stored in a system
buffer if it arrives and no receive has been posted for it. The performance
of both types is similar for messages of size 0-100 bytes. Beyond 100 bytes,
an UNFORCED message is preceded by the exchange of 'reserve-acknowledge'
messages that cause space to be reserved in the destinaticn. This process
causes significant overhead as we shall see in what follows.

Figure 2 shows the time required to communicate messages of length 0-
400 bytes between processors that are 1, 2,... , 7 communication links apart.
The time required to send a 0 byte message to a neighboring node (i.e.
distance 1 away) is about 95 /Isec. (this represents the absolute minimum for
any communication operation on this machine). The time to communicate
a 0 byte message over the maximum distance of 7 is 155 jusec. Inspection
of these plots reveals that they are linear, parallel and evenly distributed
from 0 to 100 bytes. The communication time increases at about 10 tssec.
per communication link. This is a far from negligible variation: the time
required to send a 4-byte floating point number distance 7 away is nearly
double the time to send it to a neighboring node.t

At message length 101 bytes our curves bifurcate into two families. The
lower family represents FORCED messages and the upper family UNFORCED
messages. The separation is due to the overhead of the reservation messages
described above.

The time (in /zsec.) to communicate a message of length m bytes over
distance d is t = 95 + 0.394m + 10.3d for FORCED messages. The times for
UNFORCED messages h identical for 0 < .M < 100 and is t = 164 + 0.398m +
29.9d for m > 100. The time for zero byte messages on the plots is slightly
below what would be predicted by these expressions.

2.3 Impact of edge contention

The contention experiment uses 8 source-destination pairs that are depicted
in Figure 3. The e-cube algorithm generates the following paths.

tThe strategy for communication used here is as follows. A receive is posted on the
destination processor, followed by a global synchronization. The source processor then
sends a message and waits for the destination to signal receipt via another global synchro-
nization. The synchronization times are not included in the plotted data. This strategy
leads to timings that are different from those reported in [1J and elsewhere, but accurately
represent the state of affairs in our implementations of complete exchange.

5

o 1 0000000

127 ' I '

Figure 3: Communication pattern for edge contention experiment.

6

0.00.35

0.0030o 7

0.0025

5

0-

~'0.0020 -

S0.0005

0. 010040 00010

Message Length (bytes)

Figure 4: Observations from contention experiment.

7

0--+1--3-- 7-* 15 -31 63 -4 127 (1)

1-34 7- 15431463 (2)

3- 7- 15-31 (3)

7--+ 15 (4)
5-- 7-4 15-. 79 (5)

6- 7- 15-.47 (6)

2 34 7- 15431495 (7)

4-54 7- 15-474111 (8)

This experiment has been designed to impose the maximum possible
amount of contention on one edge. Thus we have 8 paths sharing edge
7 -* 15. This experiment was run for message lengths of 0 to 1000 bytes
using FOPCED types.

Figure 4 shows a set of line plots from the contention experiment. The
plot labeled 1 shows the time for path (1) (0 -* 127) alone, plct 2 shows the
time for paths (1) and (2) simultaneously and so on. The time required by
eight contending messages of 1000 bytes is more than seven times the time
required for one message.

In contrast with edge contention, which has disastrous impact on commu-
nication time, node contention has no measurable impact on the iPSC-860.

The Intel iPSC-2 and IPSC-860 are among the first commercial examples
of circuit-switched machines. Since circuit switching provides very fast com-
munications, it is generally felt that it eliminates most of the inefficiencies
caused by communication overhead. In particular, it is a common belief that
programmers can ignore the details of the interconnection network. This is
a mistaken belief since, as we shall see later in this paper, very careful con-
sideration of the interconnection is necessary if the full power of the machine
is to be utilized.

3 The Complete Exchange Pattern

When executing the complete exchange on a distributed memory parallel
machine, each of n processors must send a different block to each of the

8

remaining n - 1 processors. The complete exchange is required by many im-
portant algorithms. These include the Alternating Directions Implicit (ADI)
method, which makes heavy use of the matrix transpose which in turn is
essentially equivalent to the complete exchange. Other important examples
include matrix-matrix and matrix-vector multiply, certain implementations
of the 2-d FFT and distributed table lookup.

The complete exchange is equivalent to the complete directed graph and,
as such, is the densest communication requirement that can be imposed on a
network. Any arbitrary communication pattern must necessarily be a subset
of the complete exchange. The time for the complete exchange on a given
machine is an upper bound on the time for an arbitrary communication
requirement.

Because of its generality and widespread applications, it is worthwhile to
investigate the time required to execute this pattern and to develop fast pro-
cedures for it, as we proceed to do in the following Sections. At this point we
present a chart (Figure 5) that depicts the communications require'nits of
the transpose algorithm under the 'e-cube' -outing algorithm on a hypercube.

The row labels in Figure 5 represent source-destination ordered pairs.
Thus 010--+110 represents the transmission of a message from processor 2
to processor 6. The column labels represent communication links or edges.
These are in groups of 3 to indicate sets of links emanating from a single
node. Thus the group 010 indicates the 3 links emanating from node 2. The
rightmost of these is the link that connects 010 to 011, the middle link is
the one connecting 010 to 000 and the leftmost is the link connecting 010 to
110.

An x in this chart at position < row, column > indicates that the edge
corresponding to column is used by the e-cube routing algorithm when trans-
mitting from the source to the destination that specifies the row. A dot
indicates that the corresponding edge is not used. Thus the row labeled
010--4101 has x's in the columns 010 0 and 001 corresponding to the
e-cube route 010--+011--+001---+101.

It is an easily verified property of the e-cube routing algorithm that no
message originating in a node whose label's leftmost binary bit is a 0 (1) can
use an edge that lies between two nodes whose labels' leftmost bits are both
1 (0). This permits us to omit half the edges from each row in Figure 5 and
make the chart compact. The two sets of rows in Figure 5 represent two sets
of edge disjoint paths.

9 ~ ,mfw m ai S

000 001 010 011 100 101 110 111

000->000 100->00 X

000->001 ..x 100->001 ..x

000->010 100->010 .x. ... X.. ...

000->011 ..x .x 100->011 ..x .x. ... x..

000->100 x 100->100

000->101 ..x x 100->101 ..X

000->110 .x. ... x..... 100->110

000->011 ..X .x ... X.. 100->111 ..X

001->000 x 101->000 X .. .

001->001 101->001 ... X

001->' 0 x. ..X 101->010X X

001->01 x 101->011 X..

00->100 X.. ..X 101->000 .. X

001->101 ... X . . . 101->101

001->110 . .. X X.. ... 101->i10 . ..X

001->110x... X.. 101->111 ... X .0... ...

010->000 x ... 110->000 x...... x. ...

010->001 x X. 110->001 ... Xx .

010->010 110->010 x ...

010->011 X ... 110->the ...c...e.. x x..
010->100 XX. 110->1O0X.

010->101 ... XX X. . 110->101 x ..

010->110 x 110->110

010->111 X x.. 110->111 X ...

011->000X. ..X iii->000 XX. ..X

011->001x. iii->001 ... X X.

011->010 x 111->010 X X

011->011 111->011 x..

011->100 X x. ..X 111->100X. ..X

011->101 ... X.. . X. 111->101x.

011->110 XX 11 ->110 x

011->Iii x.. 111->111

Figi-, b: Link usage of the complete exchange communication pattern on

an 8-node hypecube

10

Every algorithm for complete exchange that transmits one block at a
time generates a schedule for the transmissions shown in the chart of Figure
5. This schedule is simply a numbering of the x's in the chart under the
following constraints.

Constraint Significance

Two x's in the same column cannot A link cannot be used for the trans-
have the same number. mission of two messages simultane-

ously.

All x's in the same row must have All links in an e-cube routed chain
the same number. are in use simultaneously because of

circuit switching.

Two rows in a group (e.g the group A processor can only transmit on
000->... in Figure 5) cannot have one link at a time.
the same number.

The largest number in any schedule determines the time required (in block
transmissions) to execute the complete exchange. This cannot be less than
n - 1 because each processor must send out n - 1 blocks serially.

4 Algorithms for Complete Exchange

A naive algorithm for complete exchange can be described as follows: at
time step i, each processor sends out the biock destined for processor i. The
program that executes in each processor is as follows.

procedure naive;
begin

for destination = 0 to n - 1 do
if (destination 5 mynumber) {no need to send to myself}

send -block-toprocessor(destination);
end

11

000 001 010 011 100 101 110 Ill

000->000 100->000 1 . . .

000->001 100->001 . .2 2...

000->010 .2 100-->010 .3. ... 3. .

000->011 . .3 .3...........100->011 . .4 .4. . 4..
000->100 4 100->100................
000->101 . .5 5 100->101 . .5....
000->110 .6. .. 6... 100->110 .6
000->111 . .7 .7. . 7 100->111 . .7 .7

001->000.... .. I.1 ... 101->000 2.. . .2........
001->001...................101->001 ... 3
001->010 .3. . .3 101->010 .4. . .4 4. .

001->011.... 101->011...........5..
001->100 5.. . .5...........101->100.... ... 6.... ...
001->101 ... 6 101->101................
001->110 .7. . .7 7.........101->110 .7. . .7........

010->000........ 110->000 3
010->001........ ... 2 .2. 110->001 ... 4.. . .4 .4.
010->010...................110->010.........5. .

010->011........ .. 3 110->011........ .. 6 6..
010->100 6.............110->100........
010->101 .. 7 . .7 .7. 110->101........ .. 8 .8.
010->110.........8.........110->110................
010->111........ .. 9 9. 110->111........

011->000........ 2 111->000 4...........4
011->001............ .3. 111->001 ... 5........5.
011->010............ .. 4 111->010.........6.. . .6

011->1 7... 7 jj->jl..................8

Figure 6: Schedule generated by the naive algorithm

12

A little reflection reveals that this algorithm concentrates traffic on the
links entering node i during time step i. As a result we expect to see con-
tention for links and hence poor performance. Figure 6 shows what can
happen. This Figure is the chart of Figure 5 with the x's replaced by num-
bers to indicate the time step during which a link is utilized, as described in
the previous Section.

In Figure 6 we have assumed that link contentior, is resolved by granting
a path to the lowest numbered processor. It is possible to demonstrate that
the time required under this assumption (i.e. the highest number in the
schedule, 10 in Figure 6) is 2n- 2. Since optimal (n - 1 step) algorithms are
known, the naive algorithm only serves to show how poor a bad approach
can beJ Careless programmers have, nevertheless, been known to use this
algorithm in practice.

4.1 Two n - 1 step Optimal Algorithms

The contention for links that disrupts transmissions can be eliminated by
carefi I scheduling. A simple algorithm that achieves this is linear.

procedure linear;
begin

for i = 1 to n - 1 do
send -block.toprocessor((mynumber + i)mod(n));

end

The schedule generated by this algorithm is shown in Figure 7. It is easy
to verify that this schedule takes exactly n - 1 steps with no contention.

Seidel et al. have studied the iPSC-2 and iPSC-860's communication sys-
tem in great detail. They have shown [6, 7, 8] that, under certain circum-
stances, it is preferable to decompose a communication requirement into
pairwise exchanges. Their research shows that this can lead to great savings
in communication time. A schedule for the complete exchange that is com-
posed of only pairwise exchanges and takes exactly n - 1 steps is givea in
[7]. This is described as follows.

However 3rn- 2 is much better than the O(n logn) standard exchange algorithm for
large n, as can be verified by measurements.

13

000 001 010 011 100 101 110 111

000->000 100->000 4
000->001 100->001 . .5 5 . .
000->010 . 2....... 100->010 .6. ... 6. .
000->011 . .3 .3 100->011 . .7 .7. .. 7..
000->100 4 100->100....
000->101 . .5 5 100->101 .. .1...
000->110 .6. . 6 100->110 .2
000->111 . .7 .7. ... 7 100->l11 . .3 .3

001->000.... ..7 101->000 3.. . .3.... ...
001->001.... 101->001 ... 4
001->010 .1. . .1 101->010 .5. . .5 5. .

001->011.......... 101->01.........6..
001->100 3.. . .3.... 101->100.....7.... ...
001->101 ... 4 101->101....
001->110 .5. . .5 5.. 101->110 .1. . .1.... ...

010->000.... 110->000 2..
010->001....7 .7. 110->001 ... 3.. . .3 .3.
010->010.... 110->010....4 ..
010~->011.... 110->011....5 5..
010->100 211->100....
010->101 .. 3 . .3 .3. 110->101....7 .7.
010->110....4.. 110->110....
010->111....5 5. 110->111....

011->000.... 5 111->000 1...... 1
011->001....6. 111->001 ... 2.. 2.
011->010....7 111->010....3. ..3

011->100 1.. 1 111->100.... 5
011->101 ... 2.. 2. 111->101....6.

Figure 7: Schedule generated by the linear optimal algorithm

14

procedure pairwise;
begin

fori= 1 ton-1 do
send block-to-processor(mynumber E i);

end

Figure 8 gives the schedule generated by this algorithm for an 8 node
hypercube. The format of this chart is different from the preceding charts.
This is because under pairwise decomposition, our problem becomes one
of scheduling an undirected graph. Each edge of this graph represents a
pairwise exchange between the two nodes at its endpoints. The exchange
between 000 and 101 means that the edges 000->001,001->101 are occupied
at the same time that the edges 101->100,100->000 are occupied. As is
usual with undirected graphs, only n(n - 1)/2 rows need to be specified.

Figure 8 illustrates that (1) procedure pairwise decomposes the complete
exchange into pairwise exchanges, (2) no two exchanges use the same link
during the same time step, and (3) the total number of steps required is 7
(in general it is n - 1).

4.2 An n step Stable Algorithm

For the linear and pairwise algorithms to function correctly, all communica-
tion steps must start in synchrony. The iPSC-860 is not an SIMD machine
and does not have a master clock or a central instruction issue unit. As such,
we can expect some slight drift in the absolute times at which transmissions
are initiated. This is caused by drifts in the individual clocks of the the
processors as well as by unpredictable operating system overhead. This drift
can be eliminated by using explicit synchronization before each transmission,
a solution that incurs substantial overhead.

The stable algorithm has been designed to tolerate considerable drift in
the timings of the transmissions and does not need synchronization before
each transmission.

15

000 001 010 Oil ioo 101 110 111

000--aol .. i .. 1i

000-010 . 2.
000-Oil . .3 .3. .3. . .3................

000-l0o 44

000-101 . .5 5 5. ..5.... ...

000--1O .6. .. 6......6............

000-1ill . .7 .7. ... 7 7 7

001-0l0 .5. . .5 . .5 .5
001-Oil 2....

001-lao 6. ..6........ ..6 6
001-101l ... 3 3

001-110 .7. . .7 7 7.. . .7 .7.

001--lll..................44.

010--Oil......... .. 6..6................

010-1l00 3........3.............3 ..
010-101 .. 7. -.7 .7. .7. . .7 7. .

010-l10.........44 ..

010--ill......... ...1 1 1. A1

011-100 7............7 . .7 .7. .. 7..

011-101 ... 4 4..
O1h-lb..... 1.. .. .1....... ...1 1..

Oil--ill..............55..

100-101................. ..1 I .1........

100-ill................ ..2 .2. .2. . .2

101-l10................ 2 . .2 .2.

101--ill..................... 6.

110--ill......................... .. 3 . .3

Figure 8: Schedule generated by the pairwise algorithm.

16

procedure stable;
begin

for i =0 to n- 1 do
begin

if(mynumber < n/2)
destination = (mynumber x 2 + 1 + i)mod(n)

else
destination = (mynumber x 2 - n + i)mod(n);

if (destination = mynumber)
idle

else
send _blockto.processor(des tination);

end;
end

It can be seen in Figure 9 that no column has two consecutive integers
in it. As an example, consider the transmission 010->111, which uses the
edges 010->O11 and O11->111 in time step 3. These links are not used
again by another processor until step 5 (when the transmission 001->111
uses 011->111). Thus the drift of a full transmission period can be tolerated
by this schedule. The price of this stability is an increase in the total time
from n - 1 to n. It is impossible to obtain a stable schedule of length n - 1
since an odd number of time periods cannot have the stability property (n
is an even number, since we are dealing with hypercubes).

4.3 The Standard Exchange Algorithm

The standard exchange procedure [4] uses log n transmissions of size n/2
blocks each. All transmissions are along paths of length 1, thus there is
no possibility of contention. This algorithm incurs massive overhead (1)
because of the perfect shuffling of blocks and (2) because each processor
transmits a total of 2 log n blocks, rather than n or n - 1 blocks for the the
algorithms discussed above. It is, nevertheless, competitive for small block
sizes since there are only log n transmissions (as opposed to n or n - 1 for the
abovementioned algorithms) and thus the overhead of starting up a message

17

000 001 010 Oil 100 101 110 111

000->000 100->000 1

000->001 ..1 100->001 ..2 2

000->010 .2 100->010 .3 ... 3.. ...

000->011 ..3 .3 100->011 ..4 .4 ... 4..

000->100 4 100->100
000->101 ..5 5 100->101 ..6

000->110 .6 ... 6..... 100->110 .7
000->111 ..7 .7 ... 7.. 100->111 ..8 .8

001->000 6 101->000 7.. ..7
001->001 101->001 ... 8

001->010 .8 ..8 101->010 .1. ..1 1.. ...

001->011 1 101->2. 2..
001->100 2.. ..2 101->1003

001->101 ... 3 101->101

001->110 .4. ..4 4 101->110 .5. ..5
001->1115. 5.. 101->1116

010->000 4. 110->000 5........5. ...

010->001 5 .5. 110->001 ... 6 .. .6 .6.

010->010 110->010 7.. ...

010->011 7 110->011 8 8..

010->100 8 110->100 1....
010->101 ... I1 .1. 110->101 2 .2.

010->110 2.. ... 110->110

010->111 3 3.. 110->111 4 ...

011->000 2...2 111->000 3.......3...3
011->001 3 111->001 ... 4.......4.

011->010 4 111->010 5 . . .5
011->011 111->011 6..

011->100 6.......6...6 111->100 7...7
011->101 ... 77. i11->101 8.

011->1108 111->110 1
011->111 I.. 111->111

Figure 9: Schedule generated by the stable algorithm

18

(95 psec per transmission, see Section 2.1) is not incurred as frequently.

procedure standard;
begin

for j = d - 1 downto 0 do
begin

if (bit j of mynumber = 0) then
message= blocks (n/2) to n - 1;

else
message= blocks 0 to (n/2) - 1;

destination = mynumber E 2j;
send -message-to..processor(des tination);
shuffle blocks;

end;
end

5 Implementation Details

We now briefly discuss the relevant details of our implementations of the
algorithms discussed in the preceding Section. After considerable experi-
mentation we have identified six implementations that are useful in the sense
that each one of them outperforms all others for some values of hypercube
dimension and block size.

The message type used is one factor to be considered when implement-
ing an an algorithm on the iPSC-860. The distinction between FORCED and
UNFORCED types has already been discussed in Section 2.1. UNFORCED types
are not competitive beyond 100 bytes because of the overhead of the "reserve-
acknowledge" cycle. For messages up to 100 bytes in size they can sometimes
lead to better performance.

The synchronization technique is another important factor. When
using FORCED message types it is essential for each processor to post receives
for all expected messages in the procedure at the very beginning, and to carry
out a global synchronization after this. Omission of the (expensive) global
synchronization step is fatal as it leads to messages arriving before their
corresponding receives have been posted and thus being discarded by the
operating system. When using UNFORCED messages, it is possible to omit this

19

global synchronization step since these messages are stored by the operating
system until the required receive has been posted. The programmer must,
however, be careful to ensure that there is enough free memory available to
the operating system so that buffers can be allocated for all messages that
may arrive without posted receives.

Finally, the issue of pairwise exchanges arises because of an idiosyn-
crasy of the iPSC's communication hardware. A receive and a transmit oc-
curring nearly simultaneously at a processor can proceed concurrently, while
a short delay causes them to be carried out serially. This issue has been
researched in detail by Seidel et al. [6, 7, 8]. It has been shown that a pair-
wise exchange is guaranteed to proceed concurrently if the two processors
;nvolved first exchange a pair of zero byte "pairwise synchronization" mes-
sages. The time for this pairwise synchronization is far less than the time for
global synchronization and is negligible for moderate to large messages.

For the linear and stable algorithms we use FORCED message types and
post all receives before a global synchronization step. A complicating factor
in the stable algorithm (Section 4.2) is the need for an idle period. To
ensure the correct operation of the stable scheme, this period must be equal
to the time taken for transmission by non-idling processors. This is achieved
by busy waiting for a period given by the expression for transmission time
of Section 2.2.

There are two implementations each for pairwise and standard. We use
FORCED types in pairwiseF and standardF and post all receives before a
global synchronization. In addition, we use the pairwise synchronization
technique of [6, 7]§. The second pair of implementations pairwiseU and
exchangeU uses UNFORCED types with no synchronization. The following
table summarizes the details of our implementations.

§ We post all receives for the pairwise synchronization messages before the global syn-
chronization. This results in better performance than the method proposed in [7] which
does not use global synchronization.

20

IMPLEMENTATION SYNCHRONIZATION MESSAGE TYPE

linear Global FORCED

stable
pairwiseF Global and pairwise
standardF

pairwiseU None UNFORCED
standardU

6 Experimental Observations

Figures 10 & 11 show the times for all six implementations against block
sizes for Intel iPSC-860 hypercubes of dimension 1-7. For d = 6 & 7, each
point in the plots is the maximum of 100 observations; for d = 1 ... 5, each
point is the maximum of 1000 observations. It is important to evaluate
these implementations with respect to their maximum run times, rather than
average or minimum. This is because there is enormous variability in the
run times of implementations that do not use pairwise synchronization (see
Section 6.4, below) and a comparison based on average or minimum run
times would be misleading.

linear, stable and pairwiseF have been plotted for 20,21,. . , 212 byte
blocks. standardF,standardU and pairwiseU have been plotted only up
to 2' bytes, since they are completely uncompetitive for large block sizes.
The labels in Figures 10 and 11 indicate the implementations that make up
the hull of optimality (i.e. the best implementation for a range of block sizes).

6.1 General Observations

As is to be expected, the standard exchange algorithm does well for small
block sizes and the pairwise algorithm is best for large sizes. Because of the
behavior of UNFORCED messages (Figure 2), there is always a drastic jump in
the plots for standardU and pairwiseU. This jump occurs at 100 bytes
for pairwiseU but, since our plots are for block sizes that are powers of
2, we observe this jump between 26 and 2' bytes. There are also jumps in
the standardU plots; these occur at (10 0 / 2

d - 1) bytes since the standard
exchange algorithm uses messages of size 2

d - 1 blocks for d dimensional hy-
percubes. On our plots we observe jumps between block sizes of 2 7-d and

21

d=7

LEGEND

. linear

0 0 stable

0 0~ pairwise-F
1 0-2

LL- + standard-F

*pairwise-U
0~

',- : x standard-U

Q)

d=5 d=6
E

10-1 4

Q))

a)QDU)Q-

.

202 8212 20 2428 212

block size (bytes)

Figure 10: Comparison of implementations. d =5, 6,7

22

d=3 d=4

10 -2

LLU-

1 W

0 Q-

4-4(In

d=1 d=2

10-2

1023

28-' bytes.

6.2 Standard Exchange

standard-U is always better than standardF for small block sizes. This is
because standard-F incurs the overhead of global and pairwise synchroniza-
tion, whereas standardU does not use any form of synchronization. However
there is ultimately a crossover because of the discontinuity in transmission
times of UNFORCED messages discussed above. In terms of overall optimality,
standardF is useful only over a small range of message sizes for dimension
7. It is possible that this variant would be of use over a wider range on larger

hypercubesf.

6.3 Stable and Linear

The n step stable algorithm is better than the n - 1 step linear algorithm for
large ranges of message sizes in cubes of dimension 5 ... 7, demonstrating that
the stability property is more useful than the number of steps (recall that
these plots are of maximum execution time). This phenomenon is clear in
Figure 12, which shows the envelopes of the linear, stable and pairwise-F
implementations. The upper (lower) plot in each envelope indicates the max-
imum (minimum) of 1000 observations. The middle plot is the average. It
can be seen that the spread of linear is slightly more than that of stable,
whereas its average and maxima are well above stable.

6.4 Pairwise Algorithm

pairwiseU is about twice as fast as pairwiseF for blocks of less than 100
bytes. This is again because of the overhead of global and pairwise synchro-
nization. Turning to Figure 12 we can see that the envelope for pairwiseF
is very tight. This demonstrates how useful the pairwiso synchronization
procedure is in ensuring concurrent transmit/receive. The large variations
for linear and stable are caused by fortuitous concurrency during some
runs and serial transmit/receives during others.

IThe largest iPSC-860 currently available is d = 7.

24

0.040

d=5

0.3 - - linear/

cG-O stable /
c-- -- pairwise-F

0.050-

/ . - /

0.025 /

/ //
o ~/7 .0.020

0.015./ 1
d7

0.010

0.005

0.000 , I I I I

0 400 800 1200 1600 2000

block size (bytes)

Figure 12: Detailed comparison of linear, stable and pairwiseF on a dimension
5 iPSC-860. Each set of 3 curves represents the maximum, average and
minimum of 100 observations.

25

To explore the impact of pairwise synchronization further, we show in
Figure 13 what happens to pairwiseF when the pairwise synchronizations
are removed. The plots in the envelopes represent maximum, average and
minimum values, just as in Figure 12. It can be seen that with pairwise syn-
chronization, all timings fall within a very narrow band of constant width.
Without synchronization, the difference between maximum and minimum
values grows with block size. However the minimum times for the unsynchro-
nized variant are generally better than pairwiseF by a constant amount
because the overhead of pairwise synchronization is not being incurred. This
is due to chance pairwise synchronization of all transmissions. This is a very
rare event that does not occur for some block sizes in Figure 13, even though
we have run our experiment for 1000 iterations each at block sizes 0, 1000,
2000,

6.5 Performance on Small Hypercubes

It is interesting to study the evolution of the hull of optimality as we move
from dimension 1 to 3. For dimension 1, pairwiseU and linear domi-
nate small and large messages respectively. pairwiseF is never optimal for
this dimension because pairwise synchronization is achieved by the global
synchronizations used by linear, since each processor sends out only one
message. The extra overhead of pairwise synchronization in pairwiseF is
redundant. pairwiseU and standardU degenerate into the same algorithm
at this dimension, except that standardU has the overhead of permutation.

As we move to dimension 2, the overhead of pairwise synchronization in
pairwiseF pays off and it becomes optimal for large messages. It remains
asymptotically optimal for all dimensions beyond 2. At dimension 3, the
overhead of data permutation in standardU becomes useful, and it becomes
optimal for the smallest messages: this variant is optimal for small messages
for all dimensions beyond 3.

6.6 Regions of Optimality

The following chart summarizes the above discussion by showing the block
size and dimension for which each implementation is best.

26

0.18
:d=5

0 .16 ---

0.14 N 0.. pai rwise..
synchronization

0 1 20.12

°-3 0

uO.10

"-
0 .0 8

0.080

0.06

0.04

0.0 synchronized
00 4:...

0.000

0 2000 4000 6000 8000
block size (bytes)

Figure 13: The impact of removing pairwise synchronization from pairwiseF
on a dimension 5 iPSC-860. Each set of 3 curves represents the maximum,
average and minimum of 1000 observations.

27

lldII Regions of Optimality

7 stand_

6 stable

5 standardU

4 pairwiseU pairwiseF

11

2- 1 linear

20 21 12 2 121 12 71 2 1 2 [1011121

Message Size (bytes)

7 Conclusions

We have discussed the communication performance of the Intel iPSC-860
circuit-switched hypercube and discussed the implementation of the com-
plete exchange on this machine. Our experimental observations show that
avoidance of contention is a major consideration when scheduling communi-
cation on this machine. We have presented six implementations of complete
exchange and have shown that each is useful for some range of message size
and cubc dimension. Our observations of the performance of these imple-
mentations show the importance of pairwise synchronization on this machine.
While the overhead of pairwise synchronization is negligible for large mes-
sages, it cannot be ignored for small messages. In the latter case, implemen-
tations without such synchronization offer considerable advantage (but are
applicable only to small messages).

Since the complete exchange is a superset of any arbitrary communication
pattern, the techniques and observations of this paper have broad applica-
bility. In particular, we have found the tabular scheme introduced in Figure

28

5 to be very useful in planning communications. Scheduling transmission
on hypercubes using 'e-cube' routing is equivalent to a numbering of the x's
on this table under the constraints stated in Section 3. This scheme can
easily be modified to account for any fixed routing strategy other than the
widely used 'e-cube'. The techniques of this paper are certainly applica-
ble to one-to-all broadcast, all-to-all broadcast and one-to-all personalized
communications [5].

The six implementations we have described fall into two classes. These are
(1) the standard exchange algorithms that are O(nlogn) and are useful for
small message sizes, and (2) the optimal or near-optimal O(n) algorithms that
always perform well for large messages. In a companion paper [2] we describe
a unified multiphase algorithm that combines both classes into one. It is
shown that standardF and pairwiseF can be unified into one algorithm
that outperforms either of its constituents over some ranges of message size
and cube dimension. The results of the present paper can be combined with
the results in [2] to obtain even faster algorithms.

In conclusion we can state that due consideration of network topology,
routing strategy, message protocol and synchronization technique is necessary
in order to obtain maximum performance from distributed memory multi-
computers like the iPSC-860. A careless implementation can take 2 to 3
times longer than a carefully thought out schedule. A little attention to the
results of this paper has the potential of improving performance by a factor
of 3 or more without any major changes in code.

Acknowledgements

I wish to thank Tom Crockett for his help with bluecrab, the 32 node iPSC-
860 at ICASE and for numerous useful discussions. Leigh Ann Tanner gave
me generous assistance with lagrange, the 128 node iPSC-860 at NASA
Ames Research Center.

References
[1] S. H. Bokhari. Communication overheads on the Intel iPSC-860 hypercube.

ICASE Interim Report 10, May 1990.

[2] S. H. Bokhari. Multiphase complete exchange on a circuit switched hypercube.
Technical Report 91-5, ICASE, January 1991.

29

[3] Intel Corporation. iPSC/2 and iPSC/860 programmers reference manual, June
1990.

L J'4] S. Lenniart Johnsson and Ching-Tien Ho. Matrix transposition on boolean n-
cube configured ensemble architectures. SIAM J. Matrix Anal. Appi., 9(3):419-
454, July 1988.

[5] S. Lennart Johnsson and Ching-Tien Ho. Optimum broadcasting and person-
alized communication in hypercubes. IEEE Trans. Computers, C-38(9):1249-
1268, September 1989.

[6] Ming-Horng Lee and Steve R. Seidel. Concurrent communication on the Intel
iPSC/2. Technical Report CS-TR 9003, Dept. of Computer Science, Michigan
Tech. Univ., July 1990.

[7] Thomas Schmiermund and Steve R. Seidel. A communication model for the
Intel iPSC/2. Technical Report CS-TR 9002, Dept. of Computer Science,
Michigan Tech. Univ., April 1990.

[8] Steve Seidel, Ming-Horng Lee, and Shivi Fotedar. Concurrent bidirectional
communication on the Intel iPSC/860 and iPSC/2. Technical Report CS-TR
9006, Dept. of Computer Science, Michigan Tech. Univ., November 1990.

30

